Association between Cannabis sativa consumption, sperm indices and sex hormones among smokers in Suleja, Niger State, Nigeria

Innocent Stephen and Mathias A Emokpae[™]

Department of Medical Laboratory Science, School of Basic Medical Sciences, University of Benin, Benin City, Nigeria.

.

Abstract

Background

Cannabis sativa use may be common among men presenting for fertility evaluation, and it's harmful effects on fertility may have been under-estimated. The objective of this study was to determine the effect of Cannabis sativa smoking on semen indices and sex hormones in apparently healthy male smokers.

Materials and Methods

Sperm characteristics and serum follicle stimulating hormone(FSH), luteinizing hormone (LH), testosterone were determined in 80 apparently healthy male Cannabis sativa smokers, mean age 38.0±9.6 years (range 20-60 years) and 40 apparently healthy non-smokers of Cannabis sativa and cigarette males with mean age 37.45±9.8 (range 20-60 years) (controls). Semen analysis was done according to the World Health Organization criteria while FSH, LH and testosterone were determined by Enzyme linked Immunosorbent Assay Technique using reagent supplied by Finecare FIA System, Guangzhou, China. Data was compared using unpaired Student's t-test, and analysis of variance while regression analysis was used to associate sperm parameters and sex hormones with duration of Cannabis sativa usage.

Results and Conclusion

Sperm concentration, percentage normal motility, normal morphology were significantly lower (p<0.001) among Cannabis sativa smokers than non-smokers, while percent asthenozoospermia, non-motile, teratozoospermia, spermatozoa were significantly higher (p<0.05) among Cannabis sativa smokers than non-smokers. Serum LH and testosterone were significantly lower (p<0.001) among Cannabis sativa smokers than non-smokers while the level of serum FSH even though was lower, the difference was insignificant. The concentrations of sperm count (p<0.001), serum FSH (p<0.03), serum LH (p<0.001) and serum testosterone (p<0.001) decreased with increasing duration of Cannabis sativa smoking among study participants. Clinicians should be aware of the effects of Cannabis sativa use on male reproductive potentials and detail clinical and Cannabis sativa use may be assessed in men investigated for infertility.

Disclaimer: The authors have no conflicts of interest.

J Reprod Biotechnol Fertil 10:36-46

Correspondence: M.A. Emokpae; ORCID ID:0000-0002-6266-1774; Email: mathias.emokpae@uniben.edu

Compliance acknowledgement: This article was edited by the Australian Editorial Services (www.nativeenglisheditor.com)

Keywords: Cannabis sativa, infertility, male, spermatozoa, hormones.

Introduction

The consumption of Cannabis sativa is popular among young men and women in all over the world including Nigeria. It was estimated that over 219 million individuals were estimated in 2017 to use marijuana worldwide (NIDA, 2020). Nigeria being Africa's most populous nation with an estimation of over a 200

million inhabitants seems to have clandestine love affair with Cannabis sativa (marijuana), despite being an illegal commodity. In Nigeria, it is estimated prevalence of users among adults was 10.8% (18.8% among men and 2.6% of women) and the average age of initiation of Cannabis use among the general population

was 19years (UNODC, 2018). Despite the clampdown on Cannabis sativa usage in Nigeria, the number of individuals who crave for it has not abated. This has led to some groups calling for the legalization of its use citing some medical values of Cannabis. In fact, some supermarkets sell Cannabis containing confectionary and cookies and attempts has been by officers of the Drug Law Enforcement Agency to clampdown on their distributions. Also Cannabis sativa weed grows luxuriously in some parts of Nigeria.

The neurological effects of Cannabis sativa are well known (Scott et al., 2018). Experimental studies have indicated harmful effects of Cannabis on reproduction (Grimaldi et al., 2009; 2013). There is paucity of information on the harmful effects of Cannabis smoking on reproduction among Nigerians. Some authors elsewhere have assessed the reproductive effects of Cannabis smoking in men (Kasman et al., 2018; Henschke, 2019; Nassan et al., 2019; Alagbonsi et al., 2019), but the results have not been consistent. The incidence of male infertility is high in Nigeria and the main reason(s) is not known. The contribution of modifiable lifestyle to high incidence of male infertility has been reported (Emokpae and Brown, Moreover, recent study has indicated that men who had ever smoked marijuana significantly higher sperm concentration than those who had never smoked marijuana (Nissan et al., 2019). This is contrary to previous studies that implicated marijuana use to declining sperm quality among human subjects (Kasman et al., 2018; Henschke, 2019). Others have associated the adverse effects of Cannabis on male reproductive potentials with the presence of endocannabinnoid receptors on several parts of the sex organs. Several aspects of the endocannabinoid system have been shown to play a role in male reproductive function (Dunne, 2019). Reproduction in male requires a functional hypothalamic-pituitary gonadal axis to produce spermatozoa and sex steroids. The secretion of gonadotropin- releasing hormone (GnRH) leads to FSH and LH production in the testes and this maintains spermatogenesis in the Sertoli cells and testosterone production in the Levdig cells. It is of public health importance to ascertain the effect of marijuana consumption on male fertility and the information may help to shape the lifestyle of many and reduce the incidence of infertility caused by the consumption of Cannabis sativa. This study seeks to determine the effect of Cannabis sativa smoking on semen indices and sex hormones in apparently healthy males in Suleja, Nigeria.

Materials and Methods

This is a cross sectional study of 80 male smokers of Cannabis sativa who were recruited in Suleja Niger State. They were consecutively recruited from smokers' joints between June, and December, 2020. The study population was apparently healthy male Cannabis sativa smokers, mean age 38.0±9.6 years (range 20-60 years) residing in Suleja, Niger State. Also 40 apparently healthy non-smokers of Cannabis sativa and cigarette mean age 37.45±9.8 (range 20-60 years) were used as controls.

Ethical clearance for the study was obtained from the Ethics committee of Hospital Management Board, Minna, Niger State, with reference number STA/495/Vol/150 and issued on 5th June, 2020.

The sample size was determine using the sample size determination formula (N=Z2pq/d2) by Lwanga and Lemeshow, 1991 and using 5% prevalence of Cannabis sativa smokers in Suleja Niger state (Adamson et al., 2015). Therefore, 80 subjects were recruited for the study and 40 non-consumers of Cannabis sativa were used as controls.

Sample Collection and Analysis

Semen was collected in the morning after 3-5days of sexual abstinence by self or assisted masturbation without the use of condom in to wide-mouth universal container and submitted to the laboratory within one hour. On the same day, 5mL of venous blood was collected into a plain tube for sex hormones determination. Semen analysis was done after liquefaction using microscopic technique according to World Health Organization criteria while follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone were determined using Enzyme linked Immunosorbent assay technique and reagents supplied by Finecare diagnostic products, Dhaka, Bangladesh.

Quality control

Each Finecare TM LH Rapid quantitative test cartridge contains internal control that satisfies routine quality control requirement. This internal control was performed each time a test sample is done. The control test cartridge was inserted and read by Finecare TM FIA System. An invalid result from the internal control causes an error message on Finecare TM FIA System indicating that the test should be repeated.

Data from the study are presented as mean±standard deviation (minimum-maximum, 95% confident interval). Statistical Package for Social Science SPSS version 20 was used for the data analysis while Duncan Multiple Range Test was used for the comparison and correlation studies. A p-value 0.05 was considered as statistically significant.

Results

The results from this study are presented in Tables 1-4. Table 1 shows the comparison of measured sperm characteristics Cannabis sativa smokers and non-smokers. It indicates that sperm concentration, percentage normal motility, normal morphology were significantly lower (p<0.001) among Cannabis sativa smokers than non-smokers. Conversely, Percent asthenozoospermia, non-motile, teratozoospermia. spermatozoa with head defects, principal piece defect. midpiece concentration and excess residual cytoplasm concentration were significantly higher (p<0.05) among Cannabis sativa smokers than nonsmokers.

Serum LH and testosterone were significantly lower (p<0.001) among Cannabis sativa smokers than non-smokers while the level of serum FSH even though was lower, was insignificant (table 2). Table 3 shows the comparison of sperm concentration and measured sex hormones among Cannabis sativa smokers based on duration of smoking. The concentrations of sperm count (p<0.001), serum FSH (p<0.03), serum LH (p<0.001) and serum testosterone (p<0.001) decreased with increasing duration of Cannabis sativa smoking among study participants. Similarly the duration of Cannabis sativa use correlated inversely with sperm count (r=-0.457,p<0.001), motility (r=-

0.341,p<0.001), morphology (r=-0.341,p<0.002), FSH (r=-0.255, p<0.023), LH(r=-0.616,p<0.001) and testosterone (r=-0.639,p<0.001).

Discussion

Cannabis sativa use may be common among men presenting for fertility evaluation, and may have a harmful effect on semen quality and sex hormone levels. Detail probing on lifestyle behaviour of subjects being evaluated may go a long way in assisting in diagnosis and management of the infertile subjects. Cannabis sativa is the most popular drug of abuse in Nigeria by about 18.8% men and 2.6% women and the average age of initiation of Cannabis sativa use among the general population was estimated to be 19years (UNODC, 2018). The situation is worrisome because the weed grows luxuriously in the some parts of the country. Only few studies on the effects of Cannabis sativa on reproductive health of smokers have been conducted in Nigeria. Studies elsewhere on the effects of Cannabis sativa use on reproduction have yielded conflicting results among men, with some of the studies using different species of the weeds which contain little quantity of the major active ingredient of Cannabis sativa (tetrahydrocannabinol). It will be of public health advantage to ascertain the effect of Cannabis sativa consumption on male fertility using the specie of the weed grown in Nigeria. Also, the information may help to shape the lifestyle of many users in order to avoid the harmful effects the hemp on male infertility.

In this study, sperm concentration, percentage normal motility, normal morphology were significantly lower (p<0.001) among Cannabis sativa smokers than non-smokers. Conversely. Percent asthenozoospermia, non-motile, teratozoospermia, spermatozoa with head midpiece defects, principal concentration and excess residual cytoplasm concentration were significantly higher (p<0.05) among Cannabis sativa smokers than nonsmokers. These findings were consistent with previous studies (Huang et al., 1978; Benerjee et al., 2011; Gundersen et al., 2015). In a study among young Danish men, it was reported that participants who belong to the highest frequency of Cannabis sativa use had 28% lower sperm concentration than non-smokers (Gundersen et al., 2015). Similarly, harmful effects at high

Table 1: Comparison of measured sperm parameters between smokers and non-smokers of Cannabis sativa (mean±SD)

PARAMETERS	CANNABIS SMOKERS (min-max) (n=80)	NON-CANNABIS SMOKERS (min-max) (n=40)	p-VALUE	
Sperm concentration count	57.5 ± 2.18	108±3.08	0.001	
(x 10 ⁶ /ml)	(14 - 96)	(60 - 141)		
Total motility				
Normal (≥40%)	71.9± 1.83	86.1± 1.37	0.001	
	(41- 92)	(64-98)		
Asthenozoospermia(1-39%)	13.22± 0.89	6.9±0.59	0.001	
	(2-36)	(2-18)		
Non-motile (0%)	6.7± 0.5	4.3± 0.53	0.004	
	(1-22)	(1-15)		
Sperm morphology				
Normal(>40%)	43.0±2.07	101.1±3.57	0.001	
	(9.8-89.3)	(46.8-140.0)		
Teratozoospermia(0-39%)	15.8±1.15	6.8±0.657	0.001	
	(3.5- 89.3)	(0.00- 17.8)		
Types of sperm defect				
Head defect concentration	7.1±0.44	3.3±0.36	0.001	
Count	(0.5-23.8)	(0.0- 7.5)		
Midpiece defect concentration	1.6±0.16	0.86±0.18	0.005	
count	(0.0- 6.5)	(0.0-3.8)		
Principal piece concentration	5.0±0.3	2.0±0.29	0.001	
count	(0.9-12.8)	(0.0-8.8)		
Excess residual cytoplasm	1.1±0.12	0.6±0.16	0.026	
concentration count	(0.0-5.2)	(0.0- 3.27)		
Volume(ml)	2.58±0.035	2.64± 0.041		
	(1.5-2.9)	(1.7-3.2)	0.270	

Table 2: Comparison of measured sex hormones between Cannabis sativa smokers and non-smokers (mean±SD)

SEX HORMONES	CANNABIS SMOKERS (MIN-MAX) (N=80)	NON-CANNABIS SMOKERS (MIN-MAX) (N=40)	p-VALUE
Follicle Stimulating Hormone (mIU/mL)	6.0±0.74	7.8±0.21	0.085
	(4.2- 6.4)	(4.9-9.9)	
Luteinizing hormone (mIU/mL)	3.9±0.18	6.5±0.15	0.001
	(0.0-6.8)	(4.3-7.7)	
Testosterone (ng/mL)	3.1±0.17	5.4±0.33	0.001
	(0.1- 6.0)	(0.5- 7.3)	

Table 3: Comparison of sperm concentration and measured sex hormones among Cannabis sativa smokers based on duration of smoking

PARAMETERS	1-5 YEARS (MIN-MAX) (N=24)	6-10 YEARS (MIN-MAX) (N=21)	11-15 YEARS (MIN-MAX) (N=18)	16-20 YEARS (MIN-MAX) (N=17)	p-VALUE
Sperm Concentration Count (cells/mL) x 10 ⁶	82.9 ± 2.79	56.8±2.68	49.2 ± 2.87	44.6±5.49	0.000
	(59-96)	(14 - 83)	(14 - 81)	(16- 58)	
Follicle Stimulating	10.9±4.43 ^a	5.3±0.20 ^b	4.9±0.19 ^b	4.4±0.37 ^c	0.031
Hormone (FSH) mIU/mL	(4.8- 64.0)	(0.0- 6.8)	(3.1 -6.4)	(3.0- 5.8)	
luteinizing hormone (LH)	5.7±0.22 ^a	4.2±0.22 ^b	3.0±0.34°	2.7±0.59 ^c	0.000
mic/mic	(4.5- 6.8)	(0.05.80)	(0.0- 5.6)	(0.0- 5.0)	
Testosterone ng/mL	4.9±0.17 ^a	3.3±0.17 ^b	2.5±0.27 ^b	1.1±0.54 ^c	0.000
	(3.5 - 6.0)	(0.5- 4.8)	(0.2 - 4.7)	(0.1 -3.3)	

Table 4: Association between duration of Cannabis sativa use and sperm parameters and sex hormones

CORRELATION	r-VALUE	p-VALUE
Duration of smoking/Sperm concentrations	-0.457	0.001
Duration of smoking/Motility	-0.376	0.001
Duration of smoking/Morphology	-0.341	0.002
Duration of smoking/FSH concentration	-0.255	0.023
Duration of smoking/LH concentration	-0.616	0.001
Duration of smoking/Testosterone concentration	-0.639	0.001

levels of Cannabis sativa use were reported by earlier studies (El-Gothamy and El-Samahy, 1992; Vescovi et al., 1992). Humans who smoke Cannabis sativa at least 4days a week for 6months, 10 or more times per week, and others who smoke 5-9 Cannabis sativa cigarettes per week had similar significantly lower mean sperm concentrations (Kolodny et al., 1974). The finding from the latter study indicated that the effect of Cannabis on sperm quality and quantity is independent of frequency of smoking. Harmful effects of Cannabis sativa use on spermatogenesis have also been reported in experimental studies (du Plessis et al., 2015; Alagbonsi et al., 2016; Di Giacomo et al., 2016). Among rats exposed to 16puffs per day of Cannabis sativa, a decreased epididymal sperm concentration was reported compared to the recreational levels in humans for 75 days (Huang et al., 1978). Also, in male rats exposed to 3 to 6mg/kg Cannabis sativa derived bhang had a significant decreased concentration of sperm count (Benerjee et al., 2011). Similar observation was reported in dogs administered daily with 12.5mg/kg Cannabis sativa for 30days and a complete spermatogenesis arrest was observed (Dixit et al., 1977). The suggested mechanisms whereby Cannabis sativa harm spermatogenesis, hormonal secretion and reproduction are via its effect on cannabinoid receptors. It was reported that in cannabinoid receptor 1(CB-1) knock-out mice, exposure to

exogenous Cannabis sativa did not have significant effect on hormone secretion, spermatogenesis and reproductive potential of the animals (Cacciola et al., 2008; 2013).

Our data revealed that Cannabis sativa use may have induced considerable morphological alterations in spermatozoa. This aligns with previous studies in animal models (Zimmerman et al., 1978; Huang et al., 1978). Male mice treated for 5 consecutive days intraperitoneal injections of Cannabis sativa demonstrated significantly higher teratozoospermia (Zimmerman et al., 1978). Some of the abnormalities observed in that study were banana-shaped, amorphous, folded or hookless heads. Other authors reported detachment of sperm heads from tails in rats administered inhaled Cannabis sativa (Huang et al., 1978). In a large prospective study involving 1,700 subjects who had used Cannabis sativa in the last 3months prior to collection of semen specimen had abnormal sperm morphology (Payne et al., 2020).

Significantly lower percentage sperm motility was observed in the ejaculates of Cannabis sativa smokers compared with non-smokers in this study. Again this is consistent with earlier studies. Spermatotoxic effects of tetrahydrocannabinol (THC) was reported in spermatozoa incubated with THC at therapeutic

doses normally used to relieve pain or reduce spasticity in human for 3 hours as measured by computer assisted semen analysis (Whan et al., 2006). A decreased progressive motility was also observed therapeutic and recreational THC concentration was administered. Similarly, decreased sperm motility was observed among 16 apparently healthy chronic Cannabis sativa users after 4 weeks of high dose Cannabis sativa usage (Hembree, 1978). The decreased in sperm motility was attributed to harmful effect of Cannabis sativa via CB-1 receptor and mitochondrial activity (Barbonetti et al., 2010). The incubation of sperm with the CB-1 agonist met-AEA resulted in a significant reduction in mitochondrial transmembrane potential. But when the sperm cells were placed under glycolysis blockage, it caused the spermatozoa to switch to oxidative phosphorylation for energy metabolism, but the addition of met-AEA to the medium halted sperm motility. This finding indicated that the inhibitory effect of THC on CBreceptor on spermatozoa mitochondrial dysfunction. Other authors extended the above study by the addition of THC to semen and measured oxygen concentration as a marker of respiration and observed a decline of oxygen in a concentration dependent manner (Badawy et al., 2009). The above findings suggest that Cannabis sativa acts via the CB-1 receptor on the mitochondrial activity to significantly reduce sperm motility.

The finding from this study is not consistent with some other studies. Nassan et al., (2019) reported that men who had ever smoked Cannabis sativa had higher sperm concentration total sperm count, fewer sperm abnormalities below the World Health Organization reference range than men who had never smoked marijuana. Their findings suggest a direct pro-spermatogenic testicular effect and secondary compensation in FSH secretion. The reported association between Cannabis sativa smoking with sperm count was stronger among past smokers than current smokers. The longer the duration since last Cannabis sativa use, the higher the concentrations of sperm count (Nassan et al., 2019). Alagbonsi et al., (2019) reported that the administration of Benin Republic hemp ethanol extract which has no cannabichromene and tetrahydrocannabinol but very small amount of cannabinol and higher quantity of fatty acids resulted in increased sperm count, morphology and viability but not motility. The authors suggested that Benin Republic Extract may have beneficial effects because of the deficiency in the gonadotoxic phytocannabinoids (Alagbonsi et al., 2019).

Studies have reported that over 500 different compounds are found in Cannabis sativa including about 100 varieties of cannanoids. Of all these, tetrahydrocannabinol (THC) is the most harmful or inducing compound in Cannabis sativa (Dunne, 2019). Interestingly, spermatozoa possess both CB-1 and CB-2 receptors and exposure to cannabinoid in-vivo may lead to alteration in the sperm count and motility.

It was observed from this study that the duration of Cannabis sativa use correlated inversely with sperm count (r=-0.457,p<0.001), motility (r=-0.341,p<0.001), morphology (r=-0.341,p<0.002), FSH (r=-0.255, p<0.023), LH(r=-0.616,p<0.001) and testosterone (r=-0.639,p<0.001). This is an indication that the longer the duration of Cannabis sativa use the more it impacts negatively on sperm indices. Those authors who had reported that Cannabis sativa use is safe have not provided sufficient evidence to buttress their claim. Apart from the Benin Republic variant of Cannabis sativa which does not contain high concentration THC, the Nigeria variant of Cannabis sativa appears to be harmful to reproductive health. An author opined recently that until high-quality evidence of safety of Cannabis use is provided, healthcare givers would not succumb to the assumption that Cannabis is safe and cannot reassure users that consumption will not affect their fertility or their offspring. Hehemann et al., (2021) reported that marijuana consumption had a mixed impact on quality in reproductive-age sperm participants who presented for infertility evaluation. They concluded that the findings of deleterious effects on sperm indices are of critical importance especially in settings where the use of marijuana has been widely legalized. It was observed from this study that Serum LH and testosterone were significantly lower (p<0.001) among Cannabis sativa smokers than non-smokers but the change in the level of serum FSH was insignificant. This is consistent with some previous studies in both animal and human studies (Wenger et al., 1987; Vescovi et al., 1992; Martin-Calderon et al., 1998). The lowering effect of Cannabis on LH level was

demonstrated by the use polyclonal antibodies against CB1 and CB2 to localize cells that express cannabinoid receptors (Wenger et al., 1999). It was revealed that those cells expressing CB-1 receptors secreted lower level of LH in the wild-type mice but no alteration was observed in LH levels in the CB1 knockout mice (Wenger et al., 2001). On the contrary this result did not align with that of Kolodny et al., (1974), who did not observe any significant change in plasma LH levels between men who smoked 5 to 9 Cannabis sativa per week and men who smoked 10 or more per week.

In this study an insignificant change in FSH level was observed which is consistent with that reported elsewhere (Cone et al.,1986). The authors failed to observe significant change in 4 healthy subjects with history of frequency Cannabis sativa use. A similar finding was reported among adult male rats injected with THC in the third cerebral ventricle (Wenger et al., 1987). A no alteration in serum FSH level was reported upon gonadotropin-releasing hormone stimulation in 10 male chronic Cannabis sativa users, who were given gonadotropin releasing hormone intravenously (Vescovi et al., 1992). Conversely, significantly lower FSH was however observed among 11 men who use 10 or more Cannabis cigarettes per week but not in those who use 5 to 9 Cannabis sativa per week, when compared with the normal controls (Kolodny et al., 1974).

Serum testosterone was significantly lower (p<0.001) among Cannabis sativa smokers than non-smokers and the concentration decreased with increasing duration of Cannabis sativa smoking. This finding does not entirely align with previous study (Thistle et al., 2017). The authors stated that there was no difference in serum testosterone levels between individuals who had used Cannabis sativa (adjusted mean = 3.69 ng/mL, 95% CI: 3.46, 3.93) and those who had never used Cannabis sativa (adjusted mean = 3.70 ng/mL, 95% CI: 3.45, 3.98) upon multivariable analysis. They however stated that serum testosterone was negatively associated with duration since last regular use of Cannabis sativa, a relationship that was strengthened among users age between 18-29years which is similar to the age range evaluated in our study. The authors also stated that recency of use, and not duration or frequency, had the strongest

association with testosterone levels. In our study, only recent users and not those who had ever used were evaluated. Testosterone is the major hormone of adult males which plays principal roles in male reproductive development and has important behavioral manifestations. Cannabis sativa may be related to reproductive health due to alterations in circulating hormones via the actions of tetrahydrocannabinol the principal active component of Cannabis sativa (du Plessis et al., 2015). The finding from this study disagree with that reported in a large population study among young healthy men in Denmark and significantly higher testosterone concentrations were reported among marijuana users (Gundersen et al., 2015). Previous studies have reported inconsistent results of serum testosterone levels among users of Cannabis Whereas earlier studv reported significantly lower levels of serum testosterone among users of Cannabis sativa (Kolodny et al., 1974), others observed significantly lower serum testosterone levels among marijuana users, and some have reported no significant difference in serum testosterone levels between users and non-users (Mendelson et al., 1974; Schaefer et al., 1975; Cushman, 1975; Coggins et al., 1976). The mechanism by which Cannabis sativa modulate the concentrations of circulating testicular hormone level in the body may be via the cannabinoid receptors, CB1 and CB2, to THC. These receptors are present in the male reproductive sex organs, including the Leydig cells of the testis which produces testosterone in men. It is known that Leydig cell testosterone production declines with age, but testosterone production may also be affected by changes in the intracellular redox environment (Beattie et al., 2015; Thistle et al., 2017). The redox environment may lead to oxidative stress, damage to cellular components and decreased testosterone concentrations.

Conclusion

LH characteristics. Semen serum and testosterone were adversely affected Cannabis sativa among apparently healthy smokers in this study. Sperm concentration, percentage normal motility, normal morphology were significantly lower while percent asthenozoospermia, non-motile, teratozoospermia, spermatozoa with head defect, midpiece defects, principal piece concentration

and excess residual cytoplasm concentration were significantly higher among Cannabis sativa smokers than non-smokers. Serum LH and testosterone were significantly lower among Cannabis sativa smokers than non-smokers while the level of serum FSH was not significantly changed. The concentrations of sperm count, serum FSH, serum LH and serum testosterone decreased with increasing duration of Cannabis sativa smoking. Clinicians should be aware of the effects of Cannabis sativa use on male reproductive potentials and detail clinical and lifestyle behaviour of males investigated for infertility may be assessed.

Acknowledgements

The authors appreciate the study participants for their cooperation and the contributions of the medical laboratory scientists, Medical Laboratory Services of State Hospital, Minna toward the completion of this study.

References

Adamson TA, Ogunlesi AO, Morakinyo O, Akinhanmi AO, Onifade PO, Olayiwola E, Alfried A A, David A F, Timothy OA, Adegboyega O, Edward BS and Oluniyi O. Descriptive National Survey of Substabce use in Nigeria. J Addict Res Ther,2015; 6:24. doi:10.4172/23155-6105.1000234

Alagbonsi AI, Olayaki LA, Abdulrahim HA, Adetona TS, Akinyemi GT. Cannabinoid-deficient Benin republic hemp (Cannabis sativa L) improves semen parameters by reducing prolactin and enhancing anti-oxidant status. BMC Complement Altern Med,2019; 19:132

Alagbonsi IA, Olayaki LA, Salman TM. Melatonin and vitamin C exacerbate Cannabis sativa-induced testicular damage when administered separately but ameliorate it when combined in rats. J Basic Clin Physiol Pharmacol, 2016;27:277–287.

Badawy ZS, Chohan KR, Whyte DA, Penefsky HS, Brown OM, Souid AK. Cannabinoids inhibit the respiration of human sperm. J Fertil Steril, 2009; 91(6):2471–2476.

Banerjee A, Singh A, Srivastava P, Turner H, Krishna A. Effects of chronic bhang (Cannabis) administration on the reproductive system of male mice. Birth Defects Res B Dev Reprod Toxicol 2011; 92: 195.

Barbonetti A, Vassallo MR, Fortunato D, Francavilla S, Maccarrone M, Francavilla F. Energetic metabolism and human sperm motility: impact of CB (1) receptor activation. J Endocrinol, 2010;151(12):5882–5892.

Beattie MC, Adekola L, Papadopoulos V, Chen H, Zirkin BR. Leydig cell aging and hypogonadism. Exper Gerontol, 2015;68:87–91.

Cacciola G, Chioccarelli T, Fasano S, Pierantoni R, Cobellis G. Estrogens and spermiogenesis: new insights from Type 1 cannabinoid receptor knockout mice. Int J Endocrinol,2013;2013:501350.

Cacciola G, Chioccarelli T, Ricci G, Meccariello R, Fasano S, Pierantoni R. The endocannabinoid system in vertebrate male reproduction: a comparative overview. J Mole Cell Endocrinol, 2008; 286(1–2 Suppl 1):S24–S30.

Coggins WJ, Swenson EW, Dawson WW, Fernandez-Salas A, Hernandez-Bolanos J, Jiminez-Antillon CF, Solano JR, Vinocour R, Faerron-Valdez F. Health status of chronic heavy Cannabis users. Ann N Y Acad Sci, 1976; 282:148–161.

Cone EJ, Johnson RE, Moore JD, Roache JD. Acute effects of smoking marijuana on hormones, subjective effects and performance in male human subjects. Pharmacol Biochem Behav, 1986;24: 1749.

Cushman P Jr. Plasma testosterone levels in healthy male marijuana smokers. American Journal of Drug and Alco Abuse,1975; 2(2):269–275.

Di Giacomo D, De Domenico E, Sette C, Geremia R, Grimaldi P. Type 2 cannabinoid receptor contributes to the physiological regulation of spermatogenesis. FASEB J, 2016;30:1453–1463.

Dixit VP, Gupta CL and Agrawal M. Testicular degeneration and necrosis induced by chronic administration of Cannabis extract in dogs. Endokrinologie, 1977; 69: 299.

Du Plessis SS, Agarwal A, Syriac A. Marijuana, phytocannabinoids, the endocannabinoid system, and male fertility. J Assist Reprod Genet, 2015; 32:1575-1588.

Dunne C. The Effects of Cannabis on Female and Male Reproduction. Brit Columb Med J, 2019; 61 (7):282-285

El-Gothamy Z, el-Samahy M. Ultrastructure sperm defects in addicts. Fertil Steril, 1992;57:699–702.

Emokpae MA and Brown SI. Effects of lifestyle factors on fertility: practical recommendations for modification. Reprod Fertil, 2021; 1: R13–R26

Grimaldi P, Di Giacomo D, Geremia R. The Endocannabinoid system and spermatogenesis. Front Endocrinol, 2013;4:192.

Grimaldi P, Orlando P, Di Siena S, Lolicato F, Petrosino S, Bisogno T,Geremia R, De Petrocellis L, Di Marzo V. The endocannabinoid system and pivotal role of the CB2 receptor in mouse spermatogenesis. Proceedings of National Academic of Science U S A, 2009; 106:11131–11136.

Gundersen TD, Jorgensen N, Andersson AM, Bang AK, Nordkap L, Skakkebaek NE, Priskorn L, Juul A, Jensen TK. Association Between Use of Marijuana and Male Reproductive Hormones and Semen Quality: A Study Among 1,215 Healthy Young Men. Am J Epidemiol, 2015; 182(6):473–481.

Hehemann MC, Raheem OA, Rajanahally S, Holt S, Chen T, Fustok JN, Song K, Rylander H, Chow E, Ostrowski KA, Muller CH, Walsh TJ. Evaluation of the impact of marijuana use on semen quality: a prospective analysis. Therapeut Adv Urol, 2021;13: 1–9.

Henschke P. Cannabis: An ancient friend or foe? What works and doesn't work. Semin Fetal Neonatal Med,2019; 24(2):P149-154

Huang HF, Nahas GG and Hembree WC 3rd. Effects of marihuana inhalation on spermatogenesis of the rat. Adv Biosci, 1978; 22-23: 419.

Kasma AM, Thomas ME, McLain AC, Eisenberg ML. Association between use of marijuana and time to pregnancy in men and women: findings from the National Survey of Family Growth. Fertil Steril, 2018; 109(5):P866-871

Kolodny RC, Masters WH, Kolodner RM, Toro G. Depression of plasma testosterone levels after chronic intensive marihuana use. N Engl J Med,1974; 290(16):872–874.

Lwanga SK and Lemeshow S. Sample Size Determination in Health Studies: A Practical Manual. Geneva: World Health Organization, IRIS; 1991.

Martín-Calderón JL, Muñoz RM, Villanúa MA, del Arco I, Moreno JL, de Fonseca R, Navarro M. Characterization of the acute endocrine actions of (-)-11-hydroxy-delta8-tetrahydrocannabinol-dimethylheptyl (HU-210), a potent

synthetic cannabinoid in rats. Eur J Pharmacol,1998; 344: 77.

Mendelson JH, Kuehnle J, Ellingboe J, Babor TF. Plasma testosterone levels before, during and after chronic marihuana smoking. N Engl J Med,1974; 291(20):1051–1055.

Nassan FL, Arvizu M, Mínguez-Alarcón L, Williams PL, Attaman J, Petrozza J, Hauser R, and Chavarro J for the EARTH Study Team. Marijuana smoking and markers of testicular function among men from a fertility centre. Hum Reprod, 2019; 1–9,

National Institute on Drug Abuse 2020. Marijuana: Effects, Medical uses and Legalization.www.drugs.com

Payne KS, Mazur DJ, Hotaling JM, Pastuszak AW. Cannabis and Male Fertility: A Systematic Review. Journal of Urology, 2020;202(4): 674–681

Schaefer CF, Gunn CG, Dubowski KM. Letter: Normal plasma testosterone concentrations after marihuana smoking. N Engl J Med, 1975; 292(16):867–868.

Scott JC, Slomiak ST, Jones JD, Rosen AFG, Moore TM, Gur RC. Association of Cannabis with cognitive functioning in adolescents and young adults: a systematic review and meta-analysis. JAMA Psychiat, 2018;75:585–595.

Thistle JE, Graubard BI, Braunlin M, Vesper H, Trabert B, Cook MB, and McGlynn KA. Marijuana use and serum testosterone concentrations among U.S. males Andrology, 2017; 5(4): 732–738.

United Nations Office on Drugs and Crime 2018. Executive Summary, Conclusions and Policy Implications. World Drug Report(United Nations publications, Sales No E.18.XI.9), Vienna, Austria p. 1-34

Vescovi PP, Pedrazzoni M, Michelini M, Maninetti L, Bernardelli F, Passeri M. Chronic effects of marihuana smoking on luteinizing hormone, follicle-stimulating hormone and prolactin levels in human males. Drug Alcohol Depend, 1992;30:59–63.

Wenger T, Fernández-Ruiz JJ and Ramos JA. Immunocytochemical demonstration of CB1 cannabinoid receptors in the anterior lobe of the pituitary gland. J Neuroendocrinol, 1999; 11:

Wenger T, Ledent C, Csernus V, Gerendai I. The central cannabinoid receptor inactivation suppresses endocrine reproductive functions. Biochem Biophys Res Commun, 2001;284(2): 363-368.

Wenger T, Rettori V, Snyder GD, Dalterio S, McCann SM. Effects of delta-9-tetrahydrocannabinol on the hypothalamic-pituitary control of luteinizing hormone and follicle-stimulating hormone secretion in adult male rats. Neuroendocrinology 1987; 46: 488.

Whan LB, West MC, McClure N, Lewis SEM. Effects of delta-9-tetrahydrocannabinol, the primary psychoactive cannabinoid in marijuana, on human sperm function in vitro. Fertil Steril, 2006; 85: 653.

Zimmerman AM, Zimmerman S and Raj AY. Effects of cannabinoids on spermatogenesis in mice. Adv Biosci, 1978; 22-23: 407.