HAZARDS AND SHORTFALLS ASSOCIATED WITH ALBUMIN IN EMBRYO CULTURE, HANDLING AND CRYOPRESERVATION MEDIA

Sendy WS¹, Sendy S², AlShammari DS³, AlBlushi SA⁴, Al Farraj A⁵, Al Badran AK⁵, Ali J⁵

Abstract

Are the embryo culture, handling and cryopreservation media (EM) and their ingredients safe for the patient, the embryo, the offspring and to the healthcare worker in assisted reproduction treatment? The EM is composed of defined and undefined components. The use of chemically defined components in the EM is scientifically sound, but the use of non-uniform components is less scientific. The main undefined component in the EM is human serum albumin (HSA). This discussion attempts to bring to the fore the safety issues or hazards, disadvantages, inappropriateness, non-compliance with norms and incompatibility with cultural values that is associated with the use of non-uniform biological components in EM. Some of these include the potential for transmission of pathogenic agents, undeclared harmful proteins, and contaminant donor miRNAs. The donor miRNAs pose risk of transcriptomic modification, may in turn could compromise the genetic purity of the lineage of the progeny. The latter is not acceptable in many cultures. This investigation assumes that a vast majority of the workers in assisted reproduction are not aware of the consequences of using non-uniform biological components in the EM. In conclusion numerous potential hazardous and non-compliance with norms occur with the use of albumin in EM. In view of the hazards and disadvantages associated with the use of non-uniform albumin in EM it is suggested that efforts are made to utilize synthetic EM in assisted reproduction procedures.

Disclaimer: All authors declare no conflict of interest whatsoever with the exception of J. Ali who is the inventor of a series of synthetic embryo culture, handling and cryopreservation media.

J Reprod Biotechnol Biomed Sci. 13:1-9

Correspondence: Wed S. Sendy; Email: Dr.wd1994@gmail.com

Compliance acknowledgement: This article was edited by the Australian Editorial Services (<u>www.nativeenglisheditor.com</u>)

Keywords: Albumin, culture, disadvantage, embryo, gamete, hazard, sperm

Notification: The statements and claims in this manuscript are that of the authors alone.

Introduction

The embryo culture, handling and cryopreservation media (collectively referred to in this manuscript as embryo media or EM) contain numerous constituents, both defined and undefined. One fundamental question is whether the EM and their ingredients, particular the undefined components, are safe for the IVF patients and the offspring that were generated in such media. Another important question is whether it is safe for medical laboratory professionals who regularly come into contact

with such media? Insufficient information and knowledge on the hazards or toxicological properties of the components of the EM used in ART media persists (Sunde et al., 2016). It has not been adequately addressed whether the embryo culture, handling and cryopreservation media are safe for use in humans. Nearly everyone who works in the field of therapeutic assisted reproduction assumes that the EM is safe and utilizes them on a routine basis. Are they really safe?

¹King Abdullah bin Abdulaziz University Hospital, Riyadh, Kingdom of Saudi Arabia

²Sulaiman Habib Hospital, Al Suwaidi, Riyadh, Najd, Kingdom of Saudi Arabia

³Department of Obstetrics and Gynecology, College of Medicine, Imam Muhammad Ibn Saud Islamic University, Riyadh, Najd, Kingdom of Saudi Arabia

⁴Radiology Department, Maternity and Children Hospital, Dammam, Eastern Region, Kingdom of Saudi Arabia

⁵IVF Department, Maternity and Children Hospital, Dammam, Eastern Region, Kingdom of Saudi Arabia

The defined components in the EM are mainly synthetic components such as carbohydrates, amino acids, minerals salts, energy substrates, metabolites, synthetic hormones and organic chemicals (eg: Glycerol. Ethylene diaminotetraacetic acid (EDTA), ethylene glycol (EG), dimethyl sulfoxide (DMSO), propylene glycol (PG) or propanediol (PROH), HEPES (4-(2hydroxyethyl)-1-piperazineethanesulfonic acid), etc. Whereas the undefined components are protein sources such serum, human serum albumin (HSA) or HSA-derived products, growth factors (some growth factors synthetically derived but may still contain contaminants unless they are very well purified), hormones of biological origin, protein extracts (example: egg yolk), and any product of biological origin.

Amongst these, the serum proteins or HSA or **HSA-derived** products considered were essential components for the EM until the successful formulation of synthetic embryo culture and handling media some 20-odd years earlier (Ali, 1997; Ali, 2004; Ali et al, 2000). The present discussion focuses on one specific ingredient of the EM, namely, human serum albumin (HSA) or HSA-derived products that has raised the concern of healthcare workers in assisted reproduction therapeutics (van Os et al. 1991; Kemmann, 1998; Ali et al., 2000; Matson and Tardiff, 2012; Sunde and Balaban 2013; Peirce et al., 2015, 2017, and many more). The HSA or HSA-derived products are biological products and consequently are not defined and its composition non-uniform between batches (Sunde et al., 2013) as they are obtained from different batches of donors. HSA or HSAderived products are known to contain numerous other undeclared contaminant components that could be harmful (Dyrlund et al., 2014) to the patients, their gametes, embryos, and babies born of IVF embryos.

Indeed, the European Parliament issued the European Union Tissue and Cell Directive in 2004, (Directive 2004/23/EC), urging member states to move away from the use of non-uniform biological components in healthcare products by April 2007 (EU, 2004) however in assisted reproduction treatment the use of HSA or HSA-derived products has persisted to the present times. This communication explores the disadvantages and impact of the use of

undefined biological components, in particular, HSA or HSA-derived products in assisted reproduction treatment procedures and their potential and possible detrimental effects to the embryo culture system (van Os et al. 1991; Kemmann, 1998; Ali et al., 2000; Matson and Tardiff, 2012: Sunde and Balaban 2013: Peirce et al., 2015, 2017). In recent years it has come to light that some aberrations occurs during embryo development in vitro which noted that individuals born of IVF treatment are prone higher incidences of some diseases (see reviews by Ahmadi et al., 2023; Berntsen et al., 2019; Hart and Norman, 2013a,b; Kalra and Molinaro, 2008; Corabian and Hailey, 1999) but most of these adverse outcomes are probably not directly related to the use of donor proteins in EM.

The impact of individual media components on gametes, embryos and the long term impact on health of individuals born following ART treatment are not fully understood (Matson and Tardiff, 2012; Peirce et al., 2015, 2017; Sunde et al., 2016) but the incidences of aberrations appears to increase among individual conceived from ART compared natural means (Katari et al., 2009; Young et al., 2001; Farin et al., 2006; Turan et al., 2010; Nelissen et al., 2013; Fidanza et al., 2014; Lazaraviciute et al., 2014; Toschi et al., 2016; Choux et al., 2018; Lou et al., 2019; Mani et al., 2020; Haber and Ptak, 2021; and many more reports) which indicate the culture milieu of embryos could impact the health of the in vitro derived embryo and the progeny resulting therefrom.

Evolution of the EM

From the early attempts to culture embryos in the 1900s (Mark and Long, 1912; Bracket, 1912, 1913; Maximov, 1925; Lewis, Gregory, 1929; Pincus, 1930; Gregory, 1930; Gregory and Castle, 1931; Lewis, 1931; Lewis and Hartman, 1933; Hammond Jr., 1949) to the successful development of embryo culture medium in the mid-1950s (Whitten, 1956; 1957) to the present (Brinster, 1971; Menezo et al., 1984; Loutradis et al., 1992; Lawitts and Biggers, 1993; Quinn, 1994; Gardner et al., 1996; Summers and Biggers, 2003; Quinn, 2004; Roberts, 2005) embryos have always been cultured in vitro in nutritional solutions made completely of chemically defined solutions that are

supplemented with donor serum proteins or "serum replacement" products/derivatives. An extensive account of the evolution of embryo culture medium and the use of biological components in embryo culture media over the last century has been described (see review by Nielsen and Ali, 2010). The main body of the media is chemically defined but when biologically derived components were added to it, they no longer retain their status as chemically defined. The use of chemically defined EM is scientifically sound but not the non-uniform component(s).

These media supplements come from human donors, or include biologically produced ingredients. Previously, albumin from animal donors (Bovine serum albumin or BSA (Loutradis et al., 1992) were utilized in the EM for the culture of human embryos but the use of animal proteins in human EM products has since been discontinued about two decades earlier. It must be borne in mind thousands of viruses and other potentially infectious microorganisms thrive in cows, the preferred animal for serum protein supplements used in cell culture and vaccine media (Rock, 1996) that can jump host to cause much damage to human health. Mad cow disease can be passed from cows to humans (Marwick, 2000) through vaccines, which suggest that it could likewise possibly be transmitted through embryo culture media supplemented with BSA contaminated with BSE prions. Bovine immunodeficiency virus (BIV), similar in genetic structure to HIV, was found in some cows (Miller,2004). The same situations could occur in the human. Blood products used in cell culture media remains a serious problem and a health risk to humans. Protein supplements can be irradiated to destroy viral pathogens but not prions. Even extreme heat treatment may not destroy prions.

Early attempts to culture human embryos in synthetic medium were somewhat compromised because of the need to incorporate proteins in fertilization medium (Caro Trounson,1986; Serta et al. 1997; Parinaud et al., 1999) because protein was thought to be essential for sperm capacitation (Aitken et al., 2007; Bailey, 2010; Brewis and Gadella, 2010). An efficacious and completely synthetic proteinfree EM that could generate viable human pregnancies embryos and was first communicated by Ali (Ali, 1997) and published in the years 2000 and 2004 (Ali et al., 2000; Ali, 2004) but remains to be made available commercially to the fraternity.

Tangible and potential risks associated with the use of biological components

The risks and or the inappropriateness of utilizing undefined nutrient components in the embryo culture medium have been acknowledged and discussed by previous researchers since the 1960s to the present times (Cholewa and Whitten, 1965; Caro and Trounson, 1986; Li et al., 1996; Schramm and Bavister, 1996; Serta et al. 1997; Parinaud et al., 1999; Ali etal., 2000; Ali, 2004; Summers and Biggers, 2003; Matson and Tardiff, 2012; Sunde and Balaban 2013; Peirce et al., 2015, 2017 and others).

The risks associated with the use of biological components such as HSA or HSA-derived products as embryo culture media supplements is clear however it appears to be not viewed seriously as a threat to health by a vast majority of workers in the human assisted reproduction treatment industry. This is likely due to, firstly, a lack of a commercial source of a truly reliable and effective synthetic EM, which relies on donor protein components to fertilize human oocytes and to support the growth of resultant embryos in vitro. Efficacious chemically defined protein-free synthetic embryo culture medium has been developed (Ali, 1997, 2004; Ali et al., 2000) but as previously stated it remains to be manufactured on a commercial scale and marketed, therefore not available to the IVF fraternity. Secondly, on the surface at least, no tangible or dramatically disastrous harm had befallen healthcare workers in the area of assisted reproduction treatment or the embryos generated from culture systems that incorporated donor protein supplements albeit two previous reports (van Os et al., 1991; Kemmann, 1997) on transmission of pathogenic agents through donor protein supplement. Nevertheless the potential for the transmission of protein-bound pathogenic agents in culture media remains a real threat. It is important that this matter is viewed seriously because of the enormous potential for harm from tainted albumin due to the large number of people undergoing in vitro fertilization (IVF) treatment.

There are over 2 million IVF treatment cycles performed per year worldwide of which at least around 25% were successful, resulting in about 500,000 live-births (de Mouzon et al., 2020). It is readily obvious what harm can befall the patients and possibly the general public if an infectious pathogenic agent inadvertently was transmitted in the EM through tainted albumin supplement.

Most contemporary EMs with the possible exception of one EM described by Ali (Ali, 1997; Ali et al., 2000) contains undefined components from donor HSA or HSA-derived products which could contain potentially or in some instances evidently harmful components such hazardous pathogenic agents (van Os et al. 1991; Kemmann, 1998) because biological components cannot be sterilized with absolute certainty (Truyen et al., 1995), donor micro strands of RNA/DNA well recognized to be present in HSA may pose risk of transcriptomic modification or imprinting disorders (Hirasawa and the Feil, 2010) undeclared inflammatory proteins could be potentially harmful to the embryo and babies born from affected embryos (Dyrlund et al., 2014). As stated undefined components previously naturally will confer batch inconsistency to the EM during production because each batch of biologically derived products will contain different spectra of contaminating components in minute concentrations. Obviously it is preferable to manufacture media that are devoid of undefined components that confer demonstrate batch consistency as well as safety. To achieve this objective of batch consistency and safety, all components of the EM must be defined and or synthetic.

In addition to the potential of transmission of pathogenic agents through donor protein supplements, a number of other contaminant undeclared proteins, about 110 contaminant proteins, are also transmitted (Dyrlund et al., 2014) in the HSA and possibly also in HSA-derived products. Of these 110 contaminant proteins, 18 were associated with the innate immune response and 17 with inflammatory responses. These undeclared contaminant proteins could potentially influence embryonic development, gestation age, birthweight and perhaps have subsequent effects on health of the offspring (Dyrlund et al., 2014).

Cultural permissibility

This study provides evidence that the IUCS Another contentious issue is the report that suggests a model in which maternal endometrial microRNAs (miRNAs) act as transcriptomic modifiers of the pre-implantation embryo (Vilella et al. 2015) such that the modifications becomes evident and is expressed in the offspring carried to term. This came to the fore in women undergoing IVF treatment using donor eggs. In this scenario, infertile women who carry a child fertilized using a donor egg will still impart something of their own genetic information through transcriptomic modification brought about by their own endometrial miRNAs. The endometrial miRNAs in the vicinity of the embryo in utero gains access to the embryo to effect the transcriptomic modification This observation lends credence to the assumption of the authors that the same could occur with contaminant donor miRNAs transmitted into the EM by HSA or HSA-derived products. This would mean that the donor miRNAs could also likewise act as transcriptomic modifiers of the cultured preimplantation embryos of IVF patients. If this occurs, the use of HSA in EM will not be acceptable to many cultures. Some cultures do permit third party involvement in reproduction where the preservation of the purity of the lineage of the progeny is paramount. There is a need to comply with cultural norms and values.

Furthermore some cultures do not permit the use of blood or blood products. In such cultures the patients may object if they knew their embryos are grown in media containing donor serum proteins. Importantly, the patients are completely oblivious of the components used to manufacture the EM. They have no clue whatsoever of the biological and or the toxicological properties, and thus, of the issue of cultural permissibility of these components. Patients place complete trust in the healthcare system and workers, and expect to be informed of the hazards of the treatment procedure including matters that may contravene cultural permissibility.

Of considerable interest and significance is that the matter of cultural permissibility or inappropriateness of the components used in making the EMs. This has probably never been conveyed to the patients. For instance caste Hindu vegetarians, some sects of Christianity, and other religious communities such as Muslims may not be satisfied, be offended or even express revulsion, if they knew their embryos are being nurtured and grown or handled in EM containing donor human serum proteins such as the human serum albumin (HSA) or HSA-derived products. This discussion raises the question of permissibility of use of HSA in the EM.

The question is do patients have the right to know their embryos are generated in EM that contains culturally non-permissible components? While the risks involved in the IVF treatment protocol are made known to the patients however the hazards, risks, and culturally inappropriate practices associated with the use of EMs containing donor serum proteins is hardly ever conveyed to them. To be fair the healthcare workers are not blameworthy because a vast majority of the healthcare workers themselves are completely unaware of the ingredients utilized to manufacture the EM. They in turn place complete trust in the regulatory authorities responsible for approving healthcare products or devices. Consequently, there is a sense, or more appropriately, a false sense of perceived safety and a culture of permissibility and acceptance among healthcare workers and, therefore it probably never occurred to them the need to discuss the matter of the cultural permissibility of EM, or its constituent components with their patients.

Discussion

Based on the literature, it appears with the passage of time, workers from later generations of embryologists are less vigilant, less vocal, or watchful towards the hazards inappropriateness associated with the use of donor proteins in EM. The good pregnancy rates achieved with protein-added contemporary media has all but stamped out debates or discussions on the hazards associated with the use of undefined EM. A vast majority of the fraternity appear to have accepted some the EMs of guestionable safety, which have masked the issues of hazard of transmission of hazardous agents, cultural permissibility and batch inconsistency, which has ultimately led to a relegation of these issues to a status of

practical insignificance which may prove detrimental in the long term.

Another question, although not within the scope of this discussion but worth a mention is whether the EMs are products of painstaking systematic research or were some of them, especially cryopreservation media, whimsically formulated? Unless the research protocol and experimental design used for the formulation of the various EMs are communicated, the fraternity cannot concede the media products in the marketplace are not whimsical. Whimsical formulations could negatively impact the treatment outcome and the long term health and well-being of individuals born of the embryos generated from such media. In recent years concern has been raised that end-users (that is the healthcare workers) of the EM must know its composition (Sunde et al., 2016) because the safety of IVF treatment with regard to the health of the offspring is of paramount importance.

Conclusion

Numerous potentially hazardous events could occur with the use of non-uniform albumin preparations in the EM. Furthermore culturally contentious issues of non-compliance with norms exists with the use of albumin in EM. In view of the hazards and disadvantages associated with the use of non-uniform albumin in EM it is suggested that efforts are made to utilize synthetic EM in assisted reproduction procedures.

References

Ahmadi H, Aghebati-Maleki L, Rashidiani S, Csabai T, Nnaemeka OB, Szekeres-Bartho J. Long-Term Effects of ART on the Health of the Offspring. Int J Mol Sci. 2023 Sep 1;24(17):13564. doi: 10.3390/ijms241713564.

Aitken RJ, Nixon B, Lin M, Koppers AJ, Lee YH, Baker MA. (2007) Proteomic changes in mammalian spermatozoa during epididymal maturation. Asian J Androl. 9(4):554-564.

Ali J Al-Natsha SD, Shahata MAM (2000) Formulation of a protein-free medium for human assisted reproduction. Hum Reprod 2000; 15:145-56

Ali J, Shelton JN. Design of vitrification solutions for the cryopreservation of embryos. J Reprod Fertil. 1993; 99(2):471-477.

Ali J. Generation of viable human embryos in a protein-free embryo culture (ART-7b) medium enhances clinical pregnancy rate and prevents disease transmission in assisted reproduction Middle East Fertil. Soc. J.2004; 9:118-127

Ali J. Source of vitrification solution. Fertil Steril.2001a; 76: 214-215

Ali J. Formulation of a protein-free culture system for the culture of human embryos: preliminary findings and pregnancies. In: Programme and abstract book of the 16th Annual Scientific meeting of the Fertility Society of Australia, 2-4 December 1997, Adelaide, Australia, p34

Ali J. Vitrification of embryos and oocytes with 5.5mol/l ethylene glycol and 1.0 mol/l sucrose. Hum Reprod 2001b; 16: 1777-1778

Bailey JL. Factors regulating sperm capacitation. Syst Biol Reprod Med. 2010;56(5):334-48. doi: 10.3109/19396368.2010.512377.

Berntsen S, Söderström-Anttila V, Wennerholm UB, Laivuori H, Loft A, Oldereid NB, Romundstad LB, Bergh C, Pinborg A. The health of children conceived by ART: 'the chicken or the egg?'. Hum Reprod Update. 2019;25(2):137-158. doi: 10.1093/humupd/dmz001

Bracket A (1912) Development in vitro de blastodermes et de jeunes embryons de mammiferes, CR Hebd. Seances Acad Sci. 155:1191-1193. Cited In: Biggers JD (1987) Pioneering mammalian embryo culture. In Mammalian Preimplantation Embryo. Eds. Bavister BD, Plenum, New York, p1-22

Bracket A (1913) Reserches sur le determinisme hereditaire de l'oeuf des mammiferes. Development in vitro de jeunes vesicules blastodermiques du lapin. Arch. Biol. (Paris) 28:447-503. Cited In: Biggers JD (1987) Pioneering mammalian embryo culture. In Mammalian Preimplantation Embryo. Eds. Bavister BD, Plenum, New York. p1-22

Brewis IA, Gadella BM. (2010) Sperm surface proteomics: from protein lists to biological function. Mol Hum Reprod. 2010 16(2):68-79.

Brinster RL (1971) In vitro culture of embryos. In: Pathways to conception. ED. Sherman AI. Charles C Thomas, Springfield, IL, p.245-277. Cited In: Biggers, JD (1987) Pioneering mammalian embryo culture. In Mammalian Preimplantation Embryo. Eds. Bavister BD, Plenum, New York, p1-22

Caro CM, Trounson A. Successful fertilization, embryo development, and pregnancy in human in vitro fertilization (IVF) using a chemically defined culture medium containing no protein. J In Vitro Fert Embryo Transf. 1986 Aug;3(4):215-7. doi: 10.1007/BF01132806.

Cholewa JA, Whitten WK. Development of 2-cell mouse embryos in the absence of a fixed nitrogen source. J. Reprod. Fertil. 1965; 22, 553-555

Choux C, Binquet C, Carmignac V, Bruno C, Chapusot C, Barberet J, Lamotte M, Sagot P, Bourc'his D, Fauque P. The epigenetic control of transposable elements and imprinted genes in newborns is affected by the mode of conception: ART versus spontaneous conception without underlying infertility. Hum Reprod 2018; 33:331–340.

Corabian P, Hailey D. The efficacy and adverse effects of in vitro fertilization and embryo transfer. Int J Technol Assess Health Care. 1999;15(1):66-85. doi: 10.1017/s0266462399015172.

de Mouzon J, Chambers GM, Zegers-Hochschild F, Mansour R, Ishihara O, Banker M, Dyer S, Kupka M, Adamson GD. International committee for monitoring assisted reproductive technologies world report: assisted reproductive technology 2012. Hum Reprod. 2020;35(8):1900-1913. doi: 10.1093/humrep/deaa090

Dyrlund TF, Kirkegaard K, Poulsen ET, Sanggaard KW, Hindkjær JJ, Kjems J, Enghild JJ, Ingerslev HJ. Unconditioned commercial embryo culture media contain a large variety of non-declared proteins: a comprehensive proteomics analysis. Hum Reprod. 2014 Nov;29(11):2421-30. doi: 10.1093/humrep/deu220.

EU. European Union Tissue and Cell Directive Directive 2004/23/EC.https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32004L0023. Accessed 31 January 2024.

Farin PW, Piedrahita JA, Farin CE. Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology 2006; 65:178–191.

Fidanza A, Toschi P, Zacchini F, Czernik M, Palmieri C, Scapolo P, Modlinski JA, Loi P, Ptak GE. Impaired placental vasculogenesis compromises the growth of sheep embryos developed in vitro. Biol Reprod. 2014; 91:21.

Gardner DK, Lane M, Calderon I, Leeton J. Environment of the preimplantation human embryo in-vivo: Metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril 1996;65:349–353

Gregory PW. The early embryology of the rabbit. Carnegie Inst. Wash.Publ. 1930;21:141-168. Cited In: Biggers JD (1987) Pioneering mammalian embryo culture. In Mammalian Preimplantation Embryo. Eds. Bavister BD, Plenum, New York. p1-22

Gregory PW, Castle WE. Further studies on the embryological basis of size inheritance in the rabbit. J Exp Zool 1931; 59:199-211. Cited In: Biggers JD (1987) Pioneering mammalian embryo culture. In Mammalian Preimplantation Embryo. Eds. Bavister BD, Plenum, New York. p1-22

Hammond J Jr. Recovery and culture of tubal mouse ova. Nature (london) 1949; 163:28-29

Hart R, Norman RJ. The longer-term health outcomes for children born as a result of IVF treatment: Part I--General health outcomes. Hum Reprod Update. 2013;19(3):232-243. doi: 10.1093/humupd/dms062.

Hart R, Norman RJ. The longer-term health outcomes for children born as a result of IVF treatment. Part II--Mental health and development outcomes. Hum Reprod Update. 2013 May-Jun;19(3):244-50. doi: 10.1093/humupd/dmt002.

Heber MF, Ptak GE. The effects of assisted reproduction technologies on metabolic health and disease†. Biol Reprod. 2021 Apr 1;104(4):734-744. doi: 10.1093/biolre/ioaa224.

Hirasawa R, Feil R. Genomic imprinting and human disease. Essays Biochem. 2010 Sep 20;48(1):187-200. doi: 10.1042/bse0480187.

Kalra SK, Molinaro TA. The association of in vitro fertilization and perinatal morbidity. Semin Reprod Med. 2008 Sep;26(5):423-35. doi: 10.1055/s-0028-1087108.

Katari S, Turan N, Bibikova M, Erinle O, Chalian R, Foster M, Gaughan JP, Coutifaris C, Sapienza C. DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet 2009; 18:3769–3778

Kemmann E. Creutzfeldt-Jakob disease (CJD) and assisted reproductive technology (ART). Quantification of risks as part of informed consent. Hum Reprod. 1998;13(7):1777. doi: 10.1093/humrep/13.7.1777.

Lawitts JA, Biggers JD Culture of preimplantation embryos. Methods Enzymol. 1993;225:153-164

Lazaraviciute G, Kauser M, Bhattacharya S, Haggarty P, Bhattacharya S. A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Hum Reprod Update 2014; 20:840–852.

Lewis WH. Living mouse eggs. Anat Rec. 1931; 58:52 (abs). Cited In: Biggers JD (1987) Pioneering mammalian embryo culture. In Mammalian Preimplantation Embryo. Eds. Bavister BD, Plenum, New York. p1-22

Lewis WH Gregory PW. Cinematogrphs of living developing rabbit-eggs. Science 1929;69:226-229. Cited In: Biggers JD (1987) Pioneering mammalian embryo culture. In Mammalian Preimplantation Embryo. Eds. Bavister BD, Plenum, New York. p1-22

Lewis WH, Hartman CG. Early cleavage stages of the egg of themonkey (Macacus rhesus). Carnegie Inst Publ Wash 1933; 24:187-203. Cited In: Biggers JD (1987) Pioneering mammalian embryo culture. In Mammalian Preimplantation Embryo. Eds. Bavister BD, Plenum, New York. p1-22

Li J, Foote RH, Liu Z, Giles JR. Development of rabbit zygotes into blastocysts in defined protein-free medium and offspring born following culture and embryo transfer. Theriogenology. 1997 Apr 1;47(5):1103-13. doi: 10.1016/s0093-691x(97)00067-8.

Lou H, le F, Hu M, Yang X, Li L, Wang L, Wang N, Gao H, Jin F. Aberrant DNA methylation of IGF2-H19 locus in human Fetus and in spermatozoa from assisted reproductive technologies. Reprod Sci 2019; 26:997–1004.

Loutradis, D., Kallianidis, K., Drakkis, P. Successful pregnancy in human IVF using BSA as a protein source in the transfer medium. Assist. Reprod. Technol. Androl. 1992;3:233-238

Mani S, Ghosh J, Coutifaris C, Sapienza C, Mainigi M. Epigenetic changes and assisted reproductive technologies. Epigenetics 2020;15:12–25.

Mark EL, Long JA. The living eggs of rats and mice with a description of apparatus for obtaining and observing them. Univ Calif Publ Zool 1912;9:105-136. Cited In: Biggers JD (1987) Pioneering mammalian embryo culture.

In Mammalian Preimplantation Embryo. Eds. Bavister BD, Plenum, New York, p1-22

Marwick C. FDA calls bovine-based vaccines currently safe. JAMA. 2000 Sep 13;284(10):1231-1232.

Matson P, Tardif S. A preliminary search for alternatives to albumin as a medium supplement for the culture of human sperm. Reprod Biol. 2012 Nov 1;12(3):329-31.

Maximov A. Tissue cultures of young mammalian embryos. Carnegir Inst Wash Publ 1925; 16:47-113. Cited In: Biggers JD (1987) Pioneering mammalian embryo culture. In Mammalian Preimplantation Embryo. Eds. Bavister BD, Plenum, New York. p1-22

Menezo Y, Testart J, Perrone D. Serum is not necessary in human in vitro fertilization, early embryo culture, and transfer. Fertil Steril. 1984:42:750-755.

Miller NZ. The polio vaccine: a critical assessment of its arcane history, efficacy, and long-term health-related consequences. Med Veritas. 2004;2:239-251.

Nelissen ECM, Dumoulin JCM, Daunay A, Evers JLH, Tost J, van Montfoort APA. Placentas from pregnancies conceived by IVF/ICSI have a reduced DNA methylation level at the H19 and MEST differentially methylated regions. Hum Reprod 2013; 28:1117–1126.

Nielsen HI, Ali J. Embryo culture media, culture techniques and embryo selection: A tribute to Wesley Kingston Whitten. J Reprod Stem Cell Biotechnol. 2010;1(1):1-29. http://www.ivf-

hub.net/images/journals/June2010/ecm_tribute.pdf

Parinaud J, Milhet P, Vieitez G, Richoilley G. Use of a medium devoid of any human or animal compound (SMART2) for embryo culture in intracytoplasmic sperm injection. J Assist Reprod Genet. 1999; 16(1):13-1 6.

Peirce K, Roberts P, Ali J, Coombes J, Matson P. A survey of scientists' awareness of and attitudes to the use of human blood products and alternatives in human assisted reproductive technology. Human Fertility. 2018;21(3):174-182.

Peirce KL, Roberts P, Ali J, Matson P. The preparation and culture of washed human sperm: a comparison of a suite of protein-free media with media containing human serum albumin. Asian Pacific J Reprod. 2015;4(3):222-227.

Quinn P. The development and impact of culture media for assisted reproductive technologies. Fertil Steril. 2004 Jan;81(1):27-9. doi: 10.1016/j.fertnstert.2003.10.003.

Quinn P. Use of co-culture with cumulus cells in insemination medium in human in vitro fertilization (IVF). J. Assist. Reprod. Genet. 1994; 11, 270-277

Roberts RM. Embryo culture conditions: What embryos like best. J Endocrinol 2005;146:2140-2141

Rock, Andrea. The Lethal Dangers of the Billion Dollar Vaccine Business,

Money, December 1996:161.

Schramm RD, Bavister BD. Development of in-vitro-fertilized primate embryos into blastocysts in a chemically defined, protein-free culture medium. Human Reprod. 1996;11:1690-1697

Serta RS, Sakellariou M, Kiessling AA. Outcome of human embryos conceived and cleaved in protein-free culture conditions. Proceedings of the 53rd Annual Meeting of the American Society for Reproductive Medicine. October 18-22, 1997, Cincinnati, Ohio, United States of America, Fertil. Steril. (suppl.)1997; S214-S215 (Abstract)

Summers MC, Biggers JD. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Human Reprod Update 2003; 9:557-582

Sunde A, Balaban B. The assisted reproductive technology laboratory: toward evidence-based practice? Fertil Steril. 2013;100(2):310-8. doi: 10.1016/j.fertnstert.2013.06.032.

Sunde A, Brison D, Dumoulin J, Harper J, Lundin K, Magli MC, Van den Abbeel E, Veiga A. Time to take human embryo culture seriously. Hum Reprod. 2016;31(10):2174-82. doi: 10.1093/humrep/dew157.

Toschi P, Czernik M, Zacchini F, Fidanza A, Loi P, Ptak GE. Evidence of placental autophagy during early pregnancy after transfer of in vitro produced (IVP) sheep embryos. PLoS One 2016; 11:e0157594.

Truyen U, Parrish CR, Harder TC, Kaaden OR. There is nothing permanent except change. The emergence of new virus diseases. Vet Microbiol. 1995;43(2-3):103-22. doi: 10.1016/0378-1135(95)92531-f.

Turan N, Katari S, Gerson LF, Chalian R, Foster MW, Gaughan JP, Coutifaris C, Sapienza

C. Inter- and intra-individual variation in allelespecific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genet 2010; 6:e1001033.

van Os HC, Drogendijk AC, Fetter WP, Heijtink RA, Zeilmaker GH. The influence of contamination of culture medium with hepatitis B virus on the outcome of in vitro fertilization pregnancies. Am J Obstet Gynecol. 1991;165(1):152-9. doi: 10.1016/0002-9378(91)90244-I.

Vilella F, Moreno-Moya JM, Balaguer N, Grasso A, Herrero M, Martínez S, Marcilla A, Simón C. Hsa-miR-30d, secreted by the human

endometrium, is taken up by the preimplantation embryo and might modify its transcriptome. Development. 2015; 142(18): 3210-3221. doi: 10.1242/dev.124289.

Whitten WK Culture of tubal mouse ova. Nature 1956; 177:96

Whitten WK Culture of tubal ova. Nature 1957; 179: 1081-1082

Young LE, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG, Carolan C, Broadbent PJ, Robinson JJ, Wilmut I, Sinclair KD. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat Genet 2001; 27:153–154.